Steel Furnace Slag for Phosphorus Remediation Chad Penn, Josh Payne, Jeff Vitale: Oklahoma State University Josh McGrath: University of Kentucky Delia Haak: Illinois River Watershed Partnership

Target: Dissolved P Soils built up with "legacy" P will continue to release dissolved P for many years Conventional best management practices do little for DP Objective: construct P removal structures to trap dissolved P in runoff and tile drainage

Easily switch out material Modular design – integrates with flow control – Agri-Drain Small ditches or

pond overflowDrawback: Small amount of material

Site Conditions

- Drainage area: 9 acres
 - Slope: 6%
- Curve #: 78
 - Peak flow rate, 2yr-24hr storm: 16 cfs
 - Annual flow volume: 9 acre-ft
- Typical dissolved P: 1 to 2 mg L⁻¹
 - Annual dissolved P load: 49 lbs (22 kg)
 - Average of 2 mg P L⁻¹
- Goal: remove 45% of annual P load

	_	•		meet (_		
PSM	Mass (Mg)	Cumulative year 1 removal (%)	Lifetime (yrs)	Hydraulic conductivity (cm s ⁻¹)	Area (m²)	PSM depth (cm)	
WTR*	7	37	21	0.01	286	2.3	
AMDR†	4	50	7	0.009	225	2.2	
Fly ash [‡]	3 (plus 95% sand)	50	3.6	0.03 (mixed with 95% sand)	406	13	
>6.35 cm slag§	171	21	1.4	1.0	190	50	
Treated > 6.35 cm slag**	36	45	3.5	1.0	40	50	EARCH CARCE

Additional Support

- · Design software currently being created
 - Provide interactive design guidance based on user inputs
- NRCS Standard will be completed after software is completed
 - NRCS cost-share
- Commercialization may be key to dissemination

Economics Example: Westville

- Metal & custom fabrication: \$2677
 - 1/4" carbon steel
- Slag transportation, sieving, coating: \$853
- Earth work for pad & berms: \$846
- Paint, seed, & erosion mat: \$613
- TOTAL Construction: ~ \$5000
- Annual renewal estimated at \$1213
- Includes profit from private companies except for metal painting and installation

Economics Example: Westville

Year \$ P removal (lbs.) Cumulative removal cost lb P) 1 4989 22 226.77 2 1213 22 140.95 3 1213 22 112.35 4 1213 22 98.05 5 1213 22 89.46	
2 1213 22 140.95 3 1213 22 112.35 4 1213 22 98.05	
3 1213 22 112.35 4 1213 22 98.05	
4 1213 22 98.05	
5 1213 22 89.46	
6 1213 22 83.74	
7 1213 22 79.66	

Re-use of Spent Slag

- Not a highly soluble P source
- Ex: Spent slag filter
- WSP: 0.03 mg L⁻¹
- Removed 59 kg sediment
- Extraction of P is possible: not economical
- Issue of scale
- XANES showed several P forms depending on PSM
- Good road base material

