CIVIL ENGINEERING APPLICATIONS OF TIRE DERIVED AGGREGATE

Dana N. Humphrey, Ph.D., P.E. Dean of Engineering University of Maine

Presented at: Ohio Sustainable Roadway Materials Workshop December 3, 2014

Outline

- Why use TDA?
- Example projects
 - Boundary Road Project
 - Lightweight fill over reinforced concrete culvert
- Design parameters for TDA as retaining wall backfill

Why use TDA?

 TDA has properties that civil engineers need

Lightweight (1/3 soil)

- Low earth pressure (1/2 soil)
- Good thermal insulation (8 times better)
- Good drainage (10 time better)
- Compressible Vibration damping

Why use TDA?

Can use lots of tires!!!
– 75 tires per yd³ of TDA fill

- 1.2 million tires for highway embankment, Portland, Maine
- 75,000 for vibration damping layer in San Jose, CA
- 390,000 tires for highway embankment in Cornwall, Ontario

Boundary Road Project

- Cornwall, Ontario
- Reconstructed highway overpass
- Owner: Ontario Ministry of Transportation
- TDA
 - 5000 cubic yards
 - 3400 tons
 - Supplier: Liberty Tire, Brantford, Ontario

TDA Production

TDA Loading

Type B TDA

Unrolling Geotextile

Advancing Lift of TDA

Compacting with Roller

Construction Partners

Monitoring Program

- Settlement
- Temperature
- Water Quality

TDA as Lightweight Fill Over Concrete Box Culvert

- U.S. 101 Piercy, California (Confusion Hill) 200 miles north of San Francisco
- New highway alignment to avoid landslide area
- Existing 6.1 m x 6.1 m reinforced concrete culvert covered by 25 m of fill
- Must add 2 m of fill for road realignment
- Problem: No load can be added to culvert
- Solution: Use TDA as lightweight fill

Photo: Courtesy of Kennec, Inc.

Longitudinal Cross Section

Confusion Hill – Initial Conditions

Photo: Courtesy of Kennec, Inc.

Confusion Hill – Completed Project

Design Parameters for TDA as Retaining Wall Backfill

• Earth pressure coefficient $K = \sigma_h / \sigma_v$

Dana N. Humphrey PhD - Civil Engineering Applications of Tire Derived Aggregates

Instrumented Walls

- At-Rest Conditions
 - UMaine Test Wall
 - North Abutment Merrymeeting Bridge
 - Limestone Run Bridge, Tarrtown, PA
- Active Conditions
 - UMaine Test Wall
 - Wall 119 Riverside, CA
 - Wall 207 Riverside, CA

Pressure cells

Wall 119 in Riverside, CA

Dana N. Humphrey PhD - Civil Engineering Applications of Tire Derived Aggregates

Example of Potential Benefits

Conclusions

- TDA has properties that engineers need
- Civil engineering applications are critical to managing scrap tires
- Highway applications
 - Lightweight embankment fill
 - Lightweight fill over culverts
 - Retaining wall backfill
- Specifications and guidelines available
- Negligible environmental effects

